资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python爬虫中如何分类

小编给大家分享一下python爬虫中如何分类,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联建站网站建设提供从项目策划、软件开发,软件安全维护、网站优化(SEO)、网站分析、效果评估等整套的建站服务,主营业务为成都做网站、成都网站建设,重庆APP开发以传统方式定制建设网站,并提供域名空间备案等一条龙服务,秉承以专业、用心的态度为用户提供真诚的服务。创新互联建站深信只要达到每一位用户的要求,就会得到认可,从而选择与我们长期合作。这样,我们也可以走得更远!

1、根据目的可以分为功能性爬虫和数据增量爬虫。

2、根据url地址和对应的页面内容是否改变,数据增量爬虫可分为地址变内容也变的爬虫和地址不变内容变的爬虫。

实例

# 1.spider文件
 
import scrapy
from movieAddPro.items import MovieaddproItem
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from redis import Redis
 
class MovieaddSpider(CrawlSpider):
    name = 'movieadd'
    # allowed_domains = ['www.xxx.com']
 
    start_urls = ['https://www.4567tv.tv/frim/index1.html']
 
    link = LinkExtractor(allow=r'.frim/index1-\d+.html')
    rules = (
        Rule(link, callback='parse_item', follow=True),
    )
    
    # 创建reids连接对象
    conn = Redis(host='127.0.0.1',port=6379)
    # 解析电影的名称和详情页的url
    def parse_item(self, response):
        li_list = response.xpath('/html/body/div[1]/div/div/div/div[2]/ul/li')
        for li in li_list:
            title = li.xpath('./div/a/@title').extract_first()
            # 获取详情页url
            detail_url = 'https://www.4567tv.tv' + li.xpath('./div/a/@href').extract_first()
            item = MovieaddproItem()
            item['title'] = title
 
            # 判断该详情页的url是否进行请求发送
            ex = self.conn.sadd('movieadd_detail_urls',detail_url)
            if ex == 1: # 说明detail_url之前不存在redis的set集合中,需要发送请求
                print('已有新数据更新,正在爬取数据......')
                yield scrapy.Request(url=detail_url,callback=self.parse_detail,meta={'item':item})
            else:
                print('暂无新数据更新......')
 
    def parse_detail(self,response):
        item = response.meta['item']
        desc = response.xpath('/html/body/div[1]/div/div/div/div[2]/p[5]/span[3]/text()').extract_first()
        item['desc'] = desc
 
        yield item
--------------------------------------------------------------------------------
# 2.pipelines文件
 
class MovieaddproPipeline(object):
 
    def process_item(self, item, spider):
        dic = {
            'title':item['title'],
            'desc':item['desc']
        }
        print(dic)
        
        conn = spider.conn
 
        conn.lpush('movieadd_data',dic)
        return item
--------------------------------------------------------------------------------
# 3.items文件
 
import scrapy
 
class MovieaddproItem(scrapy.Item):
    title = scrapy.Field()
    desc = scrapy.Field()
--------------------------------------------------------------------------------
# 4.setting文件
 
BOT_NAME = 'movieAddPro'
 
SPIDER_MODULES = ['movieAddPro.spiders']
NEWSPIDER_MODULE = 'movieAddPro.spiders'
 
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36'
 
ROBOTSTXT_OBEY = False
 
LOG_LEVEL = 'ERROR'
 
ITEM_PIPELINES = {
   'movieAddPro.pipelines.MovieaddproPipeline': 300,
}
- 需求:爬取糗事百科中的段子和作者数据。
 
# 1.spider文件
 
import scrapy
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from incrementByDataPro.items import IncrementbydataproItem
from redis import Redis
import hashlib
 
class QiubaiSpider(CrawlSpider):
    name = 'qiubai'
    start_urls = ['https://www.qiushibaike.com/text/']
 
    rules = (
        Rule(LinkExtractor(allow=r'/text/page/\d+/'), callback='parse_item', follow=True),
        Rule(LinkExtractor(allow=r'/text/$'), callback='parse_item', follow=True),
    )
    #创建redis链接对象
    conn = Redis(host='127.0.0.1',port=6379)
    def parse_item(self, response):
        div_list = response.xpath('//div[@id="content-left"]/div')
 
        for div in div_list:
            item = IncrementbydataproItem()
            item['author'] = div.xpath('./div[1]/a[2]/h3/text() | ./div[1]/span[2]/h3/text()').extract_first()
            item['content'] = div.xpath('.//div[@class="content"]/span/text()').extract_first()
 
            #将解析到的数据值生成一个唯一的标识进行redis存储
            source = item['author']+item['content']
            source_id = hashlib.sha256(source.encode()).hexdigest()
            #将解析内容的唯一表示存储到redis的data_id中
            ex = self.conn.sadd('data_id',source_id)
 
            if ex == 1:
                print('该条数据没有爬取过,可以爬取......')
                yield item
            else:
                print('该条数据已经爬取过了,不需要再次爬取了!!!')
--------------------------------------------------------------------------------
# 2.pipelines文件     
 
from redis import Redis
class IncrementbydataproPipeline(object):
    conn = None
 
    def open_spider(self, spider):
        self.conn = Redis(host='127.0.0.1', port=6379)
 
    def process_item(self, item, spider):
        dic = {
            'author': item['author'],
            'content': item['content']
        }
        print(dic)
        self.conn.lpush('qiubaiData', dic)
        return item

以上是“python爬虫中如何分类”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!


网页标题:python爬虫中如何分类
文章分享:http://www.cdkjz.cn/article/psjhho.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220