资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

怎么进行Spark和MapReduce的对比

本篇文章为大家展示了怎么进行Spark和MapReduce的对比,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

创新互联专业为企业提供江达网站建设、江达做网站、江达网站设计、江达网站制作等企业网站建设、网页设计与制作、江达企业网站模板建站服务,10余年江达做网站经验,不只是建网站,更提供有价值的思路和整体网络服务。

下面给大家介绍Spark和MapReduce,并且能够在遇到诸如"MapReduce相对于Spark的局限性?"

首先  纠正一个误区  :在浏览Spark官网时,经常能看到如下这张图:

怎么进行Spark和MapReduce的对比

从上图可以看出Spark的运行速度明显比Hadoop(其实是跟MapReduce计算引擎对比)快上百倍!相信很多人在初学Spark时,认为Spark比MapReduce快的第一直观概念都是由此而来,甚至笔者发现网上有些资料更是直接照搬这个对比,给初学者造成一个很严重的误区。
这张图是分别使用Spark和Hadoop运行逻辑回归机器学习算法的运行时间比较,那么能代表Spark运行任何类型的任务在相同的条件下都能得到这个对比结果吗?很显然是不对的,对于这个对比我们要知其然更要知其所以然。

首先,大多数机器学习算法的核心是什么?就是对同一份数据在训练模型时,进行不断的迭代、调参然后形成一个相对优的模型。而Spark作为一个基于内存迭代式大数据计算引擎很适合这样的场景,之前的文章《Spark RDD详解》也有介绍,对于相同的数据集,我们是可以在第一次访问它之后,将数据集加载到内存,后续的访问直接从内存中取即可。但是MapReduce由于运行时中间结果必然刷磁盘等因素,导致不适合机器学习等的迭代场景应用,还有就是HDFS本身也有缓存功能,官方的对比极有可能在运行逻辑回归时没有很好配置该缓存功能,否则性能差距也不至于这么大。

相对于MapReduce,我们为什么选择Spark  ,笔者做了如下总结  :   
Spark   

1.集流批处理、交互式查询、机器学习及图计算等于一体

2.基于内存迭代式计算,适合低延迟、迭代运算类型作业

3.可以通过缓存共享rdd、DataFrame,提升效率【尤其是SparkSQL可以将数据以列式的形式存储于内存中】

4.中间结果支持checkpoint,遇错可快速恢复

5.支持DAG、map之间以pipeline方式运行,无需刷磁盘

6.多线程模型,每个worker节点运行一个或多个executor服务,每个task作为线程运行在executor中,task间可共享资源

7.Spark编程模型更灵活,支持多种语言如java、scala、python、R,并支持丰富的transformation和action的算子
MapReduce      

1.适合离线数据处理,不适合迭代计算、交互式处理、流式处理

2.中间结果需要落地,需要大量的磁盘IO和网络IO影响性能

3.虽然MapReduce中间结果可以存储于HDFS,利用HDFS缓存功能,但相对Spark缓存功能较低效

4.多进程模型,任务调度(频繁申请、释放资源)和启动开销大,不适合低延迟类型作业

5.MR编程不够灵活,仅支持map和reduce两种操作。当一个计算逻辑复杂的时候,需要写多个MR任务运行【并且这些MR任务生成的结果在下一个MR任务使用时需要将数据持久化到磁盘才行,这就不可避免的进行遭遇大量磁盘IO影响效率】

虽然Spark相对于MapReduce有很多优势,但并不代表Spark目前可以完全取代MapReduce。

上述内容就是怎么进行Spark和MapReduce的对比,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注创新互联行业资讯频道。


分享文章:怎么进行Spark和MapReduce的对比
文章分享:http://www.cdkjz.cn/article/poeego.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220