资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

Flink中CoProcessFunction如何使用

今天就跟大家聊聊有关Flink中CoProcessFunction如何使用,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。

目前成都创新互联公司已为1000多家的企业提供了网站建设、域名、虚拟主机网站托管、企业网站设计、深泽网站维护等服务,公司将坚持客户导向、应用为本的策略,正道将秉承"和谐、参与、激情"的文化,与客户和合作伙伴齐心协力一起成长,共同发展。

  • 本文是《Flink处理函数实战》系列的第五篇,学习内容是如何同时处理两个数据源的数据;

  • 试想在面对两个输入流时,如果这两个流的数据之间有业务关系,该如何编码实现呢,例如下图中的操作,同时监听99989999端口,将收到的输出分别处理后,再由同一个sink处理(打印): Flink中CoProcessFunction如何使用

  • Flink支持的方式是扩展CoProcessFunction来处理,为了更清楚认识,我们把KeyedProcessFunctionCoProcessFunction的类图摆在一起看,如下所示: Flink中CoProcessFunction如何使用

  • 从上图可见,CoProcessFunction和KeyedProcessFunction的继承关系一样,另外CoProcessFunction自身也很简单,在processElement1和processElement2中分别处理两个上游流入的数据即可,并且也支持定时器设置;

编码实战

接下来咱们开发一个应用来体验CoProcessFunction,功能非常简单,描述如下:

  1. 建两个数据源,数据分别来自本地99989999端口;

  2. 每个端口收到类似aaa,123这样的数据,转成Tuple2实例,f0是aaa,f1是123

  3. 在CoProcessFunction的实现类中,对每个数据源的数据都打日志,然后全部传到下游算子;

  4. 下游操作是打印,因此99989999端口收到的所有数据都会在控制台打印出来;

  5. 整个demo的功能如下图所示: Flink中CoProcessFunction如何使用

  • 接下来编码实现上述功能;

源码下载

如果您不想写代码,整个系列的源码可在GitHub下载到,地址和链接信息如下表所示(https://github.com/zq2599/blog_demos):

名称链接备注
项目主页https://github.com/zq2599/blog_demos该项目在GitHub上的主页
git仓库地址(https)https://github.com/zq2599/blog_demos.git该项目源码的仓库地址,https协议
git仓库地址(ssh)git@github.com:zq2599/blog_demos.git该项目源码的仓库地址,ssh协议

这个git项目中有多个文件夹,本章的应用在flinkstudy文件夹下,如下图红框所示: Flink中CoProcessFunction如何使用

Map算子

  1. 做一个map算子,用来将字符串aaa,123转成Tuple2实例,f0是aaa,f1是123

  2. 算子名为WordCountMap.java

package com.bolingcavalry.coprocessfunction;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.StringUtils;

public class WordCountMap implements MapFunction> {
    @Override
    public Tuple2 map(String s) throws Exception {

        if(StringUtils.isNullOrWhitespaceOnly(s)) {
            System.out.println("invalid line");
            return null;
        }

        String[] array = s.split(",");

        if(null==array || array.length<2) {
            System.out.println("invalid line for array");
            return null;
        }

        return new Tuple2<>(array[0], Integer.valueOf(array[1]));
    }
}

便于扩展的抽象类

  • 开发一个抽象类,将前面图中提到的监听端口、map处理、keyby处理、打印都做到这个抽象类中,但是CoProcessFunction的逻辑却不放在这里,而是交给子类来实现,这样如果我们想进一步实践和扩展CoProcessFunction的能力,只要在子类中专注做好CoProcessFunction相关开发即可,如下图,红色部分交给子类实现,其余的都是抽象类完成的: Flink中CoProcessFunction如何使用

  • 抽象类AbstractCoProcessFunctionExecutor.java,源码如下,稍后会说明几个关键点:

package com.bolingcavalry.coprocessfunction;

import org.apache.flink.api.java.tuple.Tuple;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;

/**
 * @author will
 * @email zq2599@gmail.com
 * @date 2020-11-09 17:33
 * @description 串起整个逻辑的执行类,用于体验CoProcessFunction
 */
public abstract class AbstractCoProcessFunctionExecutor {

    /**
     * 返回CoProcessFunction的实例,这个方法留给子类实现
     * @return
     */
    protected abstract CoProcessFunction<
            Tuple2,
            Tuple2,
            Tuple2> getCoProcessFunctionInstance();

    /**
     * 监听根据指定的端口,
     * 得到的数据先通过map转为Tuple2实例,
     * 给元素加入时间戳,
     * 再按f0字段分区,
     * 将分区后的KeyedStream返回
     * @param port
     * @return
     */
    protected KeyedStream, Tuple> buildStreamFromSocket(StreamExecutionEnvironment env, int port) {
        return env
                // 监听端口
                .socketTextStream("localhost", port)
                // 得到的字符串"aaa,3"转成Tuple2实例,f0="aaa",f1=3
                .map(new WordCountMap())
                // 将单词作为key分区
                .keyBy(0);
    }

    /**
     * 如果子类有侧输出需要处理,请重写此方法,会在主流程执行完毕后被调用
     */
    protected void doSideOutput(SingleOutputStreamOperator> mainDataStream) {
    }

    /**
     * 执行业务的方法
     * @throws Exception
     */
    public void execute() throws Exception {
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 并行度1
        env.setParallelism(1);

        // 监听9998端口的输入
        KeyedStream, Tuple> stream1 = buildStreamFromSocket(env, 9998);

        // 监听9999端口的输入
        KeyedStream, Tuple> stream2 = buildStreamFromSocket(env, 9999);

        SingleOutputStreamOperator> mainDataStream = stream1
                // 两个流连接
                .connect(stream2)
                // 执行低阶处理函数,具体处理逻辑在子类中实现
                .process(getCoProcessFunctionInstance());

        // 将低阶处理函数输出的元素全部打印出来
        mainDataStream.print();

        // 侧输出相关逻辑,子类有侧输出需求时重写此方法
        doSideOutput(mainDataStream);

        // 执行
        env.execute("ProcessFunction demo : CoProcessFunction");
    }
}
  • 关键点之一:一共有两个数据源,每个源的处理逻辑都封装到buildStreamFromSocket方法中;

  • 关键点之二:stream1.connect(stream2)将两个流连接起来;

  • 关键点之三:process接收CoProcessFunction实例,合并后的流的处理逻辑就在这里面;

  • 关键点之四:getCoProcessFunctionInstance是抽象方法,返回CoProcessFunction实例,交给子类实现,所以CoProcessFunction中做什么事情完全由子类决定;

  • 关键点之五:doSideOutput方法中啥也没做,但是在主流程代码的末尾会被调用,如果子类有侧输出(SideOutput)的需求,重写此方法即可,此方法的入参是处理过的数据集,可以从这里取得侧输出;

子类决定CoProcessFunction的功能

  1. 子类CollectEveryOne.java如下所示,逻辑很简单,将每个源的上游数据直接输出到下游算子:

package com.bolingcavalry.coprocessfunction;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.functions.co.CoProcessFunction;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class CollectEveryOne extends AbstractCoProcessFunctionExecutor {

    private static final Logger logger = LoggerFactory.getLogger(CollectEveryOne.class);

    @Override
    protected CoProcessFunction, Tuple2, Tuple2> getCoProcessFunctionInstance() {
        return new CoProcessFunction, Tuple2, Tuple2>() {

            @Override
            public void processElement1(Tuple2 value, Context ctx, Collector> out) {
                logger.info("处理1号流的元素:{},", value);
                out.collect(value);
            }

            @Override
            public void processElement2(Tuple2 value, Context ctx, Collector> out) {
                logger.info("处理2号流的元素:{}", value);
                out.collect(value);
            }
        };
    }

    public static void main(String[] args) throws Exception {
        new CollectEveryOne().execute();
    }
}
  1. 上述代码中,CoProcessFunction后面的泛型定义很长:, Tuple2, Tuple2> ,一共三个Tuple2,分别代表一号数据源输入、二号数据源输入、下游输出的类型;

验证

  1. 分别开启本机的99989999端口,我这里是MacBook,执行nc -l 9998nc -l 9999

  2. 启动Flink应用,如果您和我一样是Mac电脑,直接运行CollectEveryOne.main方法即可(如果是windows电脑,我这没试过,不过做成jar在线部署也是可以的);

  3. 在监听9998和9999端口的控制台分别输入aaa,111bbb,222

  4. 以下是flink控制台输出的内容,可见processElement1和processElement1方法的日志代码已经执行,并且print方法作为最下游,将两个数据源的数据都打印出来了,符合预期:

12:45:38,774 INFO CollectEveryOne - 处理1号流的元素:(aaa,111),
(aaa,111)
12:45:43,816 INFO CollectEveryOne - 处理2号流的元素:(bbb,222)
(bbb,222)

看完上述内容,你们对Flink中CoProcessFunction如何使用有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注创新互联行业资讯频道,感谢大家的支持。


当前名称:Flink中CoProcessFunction如何使用
转载注明:http://www.cdkjz.cn/article/pihddi.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220