从品牌网站建设到网络营销策划,从策略到执行的一站式服务
设P(x0,y0)
10年积累的成都做网站、网站建设经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站制作后付款的网站建设流程,更有北戴河免费网站建设让你可以放心的选择与我们合作。
过P作函数y=f(x)的切线
设切点为(x,f(x))
由斜率关系
f'(x)=(f(x)-y0)/((x-x0)
可以解得x
再求切线方程
解:函数的切线方程就是去该函数的导数。例:y=ax²+bx+c(y为x的函数)上面一个点(m,n)
切线斜率k=y'=2ax+b,则过(a,b)点的切线方程为y-n=(2am+b)(x-m)。
数学:
数学是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。
如函数的倒数为:y=2x-2
所以点(0,3)斜率为:k=2x-2=-2
所以切线方程为:y-3=-2(x-0) (点斜式)
即2x+y-3=0
所以y=x^2-2x-3在(0,3)的切线方程为2x+y-3=0。
扩展资料
分析-解析法求切线方程
设圆上一点A为:
则有:
对隐函数求导,则有:
(隐函数求导法亦可证明椭圆的切线方程,方法相同)
或直接:
(k1为与切线垂直的半径斜率。)
得:
(以上处理是假设斜率存在,在后面讨论斜率不存在的情况)
所以切线方程可写为:
(1)
求出y=f(x)在点x0处的纵坐标y0=f(x0)
(2)
求导:y ′ = f′(x)
(3)
求出在点x=x0处切线的斜率k=f ′(x0)
(4)
根据点斜式,写出切线方程:y = k(x-x0)+y0 = f ′(x0) * { x-x0 } + f(x0)
如果有要求,可根据要求进一步化成一般式或斜截式。
f(x)过(x0,y0)的切线
当(x0,y0)在f(x)上时,由切线的斜率是f'(x0),所以方程是(y-y0)/(x-x0)=f'(x0)
当(x0,y0)不在f(x)上时,设切点是(x1,y1),
方程为(y-y0)/(x-x0)=f'(x1)
y1=f(x1)
(y1-y0)/(x1-x0)=f'(x1)由这两个方程可解出(x1,y1)就可求出方程
成都网站建设公司地址:成都市青羊区太升南路288号锦天国际A座10层 建设咨询028-86922220
成都快上网科技有限公司-四川网站建设设计公司 | 蜀ICP备19037934号 Copyright 2020,ALL Rights Reserved cdkjz.cn | 成都网站建设 | © Copyright 2020版权所有.
专家团队为您提供成都网站建设,成都网站设计,成都品牌网站设计,成都营销型网站制作等服务,成都建网站就找快上网! | 成都网站建设哪家好? | 网站建设地图