资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

定义阶乘函数python,定义阶乘函数

Python,的numpy模块中有没有 阶乘函数?

有阶乘函数,Numpy中,mat必须是2维的,但是array可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。

创新新互联,凭借十多年的成都做网站、成都网站建设经验,本着真心·诚心服务的企业理念服务于成都中小企业设计网站有上千余家案例。做网站建设,选成都创新互联

在numpy中matrix的主要优势是:相对简单的乘法运算符号。例如,a和b是两个matrices,那么a*b,就是矩阵积。

若a=mat([1,2,3]) 是矩阵,则 a.A 则转换成了数组,反之,a.M则转换成了矩阵。

扩展资料:

常用的Numpy运算:

取矩阵中的某一行 ss[1,:] 或该行的某两列 ss[1,0:2]

将数组转换成矩阵 randMat=mat(random.rand(4,4))

矩阵求逆 randMat.I

单位阵 eye(4)

零矩阵 zeros((x,y)) 建立x行y列的零矩阵。

最大值和最小值 a.max(),a.min() ,而a.max(0) 表示按列选取每列的最大值。最大/小元素的下标 a.argmax(),a.argmin()

#作为方法x.sum() #所有元素相加x.sum(axis=0)   #按列相加x.sum(axis=1)   #按行相加#作为函数sum(a,axis=0)ss.mean() 

mean(a,axis=0(或1))  #按列或行求均值var(a)var(a,axis=0(或1))  #按列或行求方差。

std(a)std(a,axis=0(或1))   #按列或行求标准差ss.T或ss.transpose() #转置。

python中n的阶乘的算法?

1 math.factorial(x)

用python计算n的阶乘的方法!(含示例代码)

2. reduce函数

用python计算n的阶乘的方法!(含示例代码)

3. 递归实现

python里怎么求n的阶乘

解法1

数组解法牛。

首先定义一个ns数组用来存储n!的各个位数上的数值,利用for循环给ns加入10000个0值,以方便后面直接根据index对数组进行操作。

然后定义length作为 “数组的长度”(有真实数值的而非自动添加的0) 也即n!的结果的位数。

之后也必须用到for循环进行累乘,但跟解法一的直接累乘不同,这里是乘数(即i)跟各个位上的数分别相乘,若结果大于等于10则carry0即向前进一位数值为carry,若j循环结束后carry0则说明需要在当前ns的“长度”上进一位,所以length+1即位数+1,这里carry起的就是判断是否进位的作用,而length则代表着结果的位数。

n= int(input())

ns = [0 for i in range(10000) ]

n= int(input())

ns = [0 for i in range(10000) ]

length = 1

ns[0] = length = 1

if n=2:

#for i in range(2,n+1):

##carry = 0

##for j in range(length):

###temp = ns[j] * i + carry

###carry = int(temp/10)

###ns[j] = temp % 10

##while carry0:

###ns[length] += carry%10

###length+=1

###carry = int(carry/10)

while length0:

#length -=1

#print(ns[length],end='')

把# 替换为空格就可以运行。

如输入1000,计算1000!

解法2

print()

m=int(input("计算m!,请输入整数m:"))

import math

a=sum([math.log10(i) for i in range(1,m+1)])

b=int(a)

c=a-b

print(f'{m}!={10**c}*10^{b}')

python没有自己算阶乘的函数吗

有阶乘函数:

improt numpy

print numpy.math.factorial(3)

python 自带的标准库也有阶乘函数

import math

print math.factorial(3)


分享名称:定义阶乘函数python,定义阶乘函数
路径分享:http://www.cdkjz.cn/article/hcgsej.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220