资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

C++并查集怎么实现

这篇文章主要介绍“C++并查集怎么实现”,在日常操作中,相信很多人在C++并查集怎么实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C++并查集怎么实现”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

创新互联是专业的龙海网站建设公司,龙海接单;提供成都网站建设、网站制作,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行龙海网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

并查集 是一种树型的数据结构,用于处理一些不相加集合的合并和查询问题。在使用中常常以森林来表示。 并查集也是用来维护集合的,和前面学习的set不同之处在于,并查集能很方便地同时维护很多集合。如果用set来维护会非常的麻烦。并查集的核心思想是记录每个结点的父亲结点是哪个结点。

前言

并查集是一种多叉树,用于处理不相交的集合的合并与查询问题(判断)。

通俗理解:在日常生活中,我们会因为某个人是自己的朋友,哪怕是朋友的朋友也是有朋友,会给予通融、 偏袒。而并查集的基本概念,就是判断某两个集合是否是“朋友”关系,并让两个集合成为“朋友”

常用操作

初始化:每个结点单独作为一个集合

查询:求元素所在的集合的代表元素,即根结点

合并:将两个元素所在的集合,合并为一个集合

合并之前,应先判断两个元素是否属于同一集合,用上面的“查询”来实现

算法实现

初始化:初始的时候每个结点各自为一个集合,father[i]表示结点 i 的父亲结点,如果 father[i]=i,我们认为这个结点是当前集合根结点(开始时每个节点根节点是他自己)。

void init() {

    for (int i = 1; i <= n; ++i) {

        father[i] = i;

    }

}

查找:查找结点所在集合的根结点,结点 x 的根结点必然也是其父亲结点的根结点(像是有递归的样子)。

int get(int x) {

    if (father[x] == x) { // x 结点就是根结点

        return x; 

    }

    return get(father[x]); // 如果该节点不是根节点,继续寻找父结点的根结点

}

合并:将两个元素所在的集合合并在一起,通常来说,合并之前先判断两个元素是否属于同一集合。

void hebing(int x, int y) {

    x = find(x);

    y = find(y);

    if (x != y) { // 不在同一个集合

        father[y] = x;//将根节点合并

    }

}

上面三个操作是并查集常用的操作

前面的并查集的复杂度实际上在有些极端情况会很慢。比如树的结构正好是一条链,那么最坏情况下,每次查询的复杂度达到了O(n) 。这并不是我们期望的结果。路径压缩的思想是,我们只关心每个结点的父结点,而并不太关心树的真正的结构(递归查找相当浪费时间)如下:

C++并查集怎么实现

当想去访问6的根节点时,要访问5的根节点,想去访问5的根节点,又要去访问4的根节点..........以此类推,此时并查集退化为线性。

这样我们在一次查询的时候,可以把查询路径上的所有结点的father[i]都赋值成为根结点。只需要在我们之前的查询函数上面进行很小的改动

int findf(int k)
{     if(f[k] == k) 
        return k;     
        return f[k] = findf(f[k]); //后来更新的点的根节点直接为最开始的点,一步找到总根节点。
}

到此,关于“C++并查集怎么实现”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


当前题目:C++并查集怎么实现
URL分享:http://www.cdkjz.cn/article/goddse.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220