资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

synchronized与lock在Java中有什么不同

synchronized与lock在Java中有什么不同?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。

梁河网站制作公司哪家好,找成都创新互联公司!从网页设计、网站建设、微信开发、APP开发、响应式网站等网站项目制作,到程序开发,运营维护。成都创新互联公司于2013年开始到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选成都创新互联公司

一.synchronized的缺陷

synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?

在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

  1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;
2)线程执行发生异常,此时JVM会让线程自动释放锁。

那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。

因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

但是采用synchronized关键字来实现同步的话,就会导致一个问题:

如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;
2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

二.java.util.concurrent.locks包下常用的类

下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。

  1.Lock

首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

public interface Lock {
  void lock();
  void lockInterruptibly() throws InterruptedException;
  boolean tryLock();
  boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
  void unlock();
  Condition newCondition();
}

下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。

在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

 首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

Lock lock = ...;
lock.lock();
try{
  //处理任务
}catch(Exception ex){
}finally{
  lock.unlock();  //释放锁
}

tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

所以,一般情况下通过tryLock来获取锁时是这样使用的:

Lock lock = ...;
if(lock.tryLock()) {
   try{
     //处理任务
   }catch(Exception ex){
   }finally{
     lock.unlock();  //释放锁
   } 
}else {
  //如果不能获取锁,则直接做其他事情
}

lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

因此lockInterruptibly()一般的使用形式如下:

public void method() throws InterruptedException {
  lock.lockInterruptibly();
  try { 
   //.....
  }
  finally {
    lock.unlock();
  } 
}

注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

2.ReentrantLock

ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

例子1,lock()的正确使用方法

public class Test {
  private ArrayList arrayList = new ArrayList();
  public static void main(String[] args) {
    final Test test = new Test();
    new Thread(){
      public void run() {
        test.insert(Thread.currentThread());
      };
    }.start();
    new Thread(){
      public void run() {
        test.insert(Thread.currentThread());
      };
    }.start();
  } 
  public void insert(Thread thread) {
    Lock lock = new ReentrantLock();  //注意这个地方
    lock.lock();
    try {
      System.out.println(thread.getName()+"得到了锁");
      for(int i=0;i<5;i++) {
        arrayList.add(i);
      }
    } catch (Exception e) {
      // TODO: handle exception
    }finally {
      System.out.println(thread.getName()+"释放了锁");
      lock.unlock();
    }
  }
}

先想一下这段代码的输出结果是什么?

Thread-0得到了锁
Thread-1得到了锁
Thread-0释放了锁
Thread-1释放了锁

也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

public class Test {
  private ArrayList arrayList = new ArrayList();
  private Lock lock = new ReentrantLock();  //注意这个地方
  public static void main(String[] args) {
    final Test test = new Test();
    new Thread(){
      public void run() {
        test.insert(Thread.currentThread());
      };
    }.start();
    new Thread(){
      public void run() {
        test.insert(Thread.currentThread());
      };
    }.start();
  } 
  public void insert(Thread thread) {
    lock.lock();
    try {
      System.out.println(thread.getName()+"得到了锁");
      for(int i=0;i<5;i++) {
        arrayList.add(i);
      }
    } catch (Exception e) {
      // TODO: handle exception
    }finally {
      System.out.println(thread.getName()+"释放了锁");
      lock.unlock();
    }
  }
}

这样就是正确地使用Lock的方法了。

例子2,tryLock()的使用方法

public class Test {
  private ArrayList arrayList = new ArrayList();
  private Lock lock = new ReentrantLock();  //注意这个地方
  public static void main(String[] args) {
    final Test test = new Test();
    new Thread(){
      public void run() {
        test.insert(Thread.currentThread());
      };
    }.start();
    new Thread(){
      public void run() {
        test.insert(Thread.currentThread());
      };
    }.start();
  } 
  public void insert(Thread thread) {
    if(lock.tryLock()) {
      try {
        System.out.println(thread.getName()+"得到了锁");
        for(int i=0;i<5;i++) {
          arrayList.add(i);
        }
      } catch (Exception e) {
        // TODO: handle exception
      }finally {
        System.out.println(thread.getName()+"释放了锁");
        lock.unlock();
      }
    } else {
      System.out.println(thread.getName()+"获取锁失败");
    }
  }
}

输出结果:

Thread-0得到了锁
Thread-1获取锁失败
Thread-0释放了锁

例子3,lockInterruptibly()响应中断的使用方法:

public class Test {
  private Lock lock = new ReentrantLock();  
  public static void main(String[] args) {
    Test test = new Test();
    MyThread thread1 = new MyThread(test);
    MyThread thread2 = new MyThread(test);
    thread1.start();
    thread2.start();
    try {
      Thread.sleep(2000);
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
    thread2.interrupt();
  } 
  public void insert(Thread thread) throws InterruptedException{
    lock.lockInterruptibly();  //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
    try { 
      System.out.println(thread.getName()+"得到了锁");
      long startTime = System.currentTimeMillis();
      for(  ;   ;) {
        if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
          break;
        //插入数据
      }
    }
    finally {
      System.out.println(Thread.currentThread().getName()+"执行finally");
      lock.unlock();
      System.out.println(thread.getName()+"释放了锁");
    } 
  }
}
class MyThread extends Thread {
  private Test test = null;
  public MyThread(Test test) {
    this.test = test;
  }
  @Override
  public void run() {
    try {
      test.insert(Thread.currentThread());
    } catch (InterruptedException e) {
      System.out.println(Thread.currentThread().getName()+"被中断");
    }
  }
}

运行之后,发现thread2能够被正确中断。

3.ReadWriteLock

ReadWriteLock也是一个接口,在它里面只定义了两个方法:

public interface ReadWriteLock {
  /**
   * Returns the lock used for reading.
   *
   * @return the lock used for reading.
   */
  Lock readLock();
  /**
   * Returns the lock used for writing.
   *
   * @return the lock used for writing.
   */
  Lock writeLock();
}

一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

4.ReentrantReadWriteLock

ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

public class Test {
  private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
  public static void main(String[] args) {
    final Test test = new Test();
    new Thread(){
      public void run() {
        test.get(Thread.currentThread());
      };
    }.start();
    new Thread(){
      public void run() {
        test.get(Thread.currentThread());
      };
    }.start();
  } 
  public synchronized void get(Thread thread) {
    long start = System.currentTimeMillis();
    while(System.currentTimeMillis() - start <= 1) {
      System.out.println(thread.getName()+"正在进行读操作");
    }
    System.out.println(thread.getName()+"读操作完毕");
  }
}

这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0读操作完毕
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1读操作完毕

而改成用读写锁的话:

public class Test {
  private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
  public static void main(String[] args) {
    final Test test = new Test();
    new Thread(){
      public void run() {
        test.get(Thread.currentThread());
      };
    }.start();
    new Thread(){
      public void run() {
        test.get(Thread.currentThread());
      };
    }.start();
  } 
  public void get(Thread thread) {
    rwl.readLock().lock();
    try {
      long start = System.currentTimeMillis();
      while(System.currentTimeMillis() - start <= 1) {
        System.out.println(thread.getName()+"正在进行读操作");
      }
      System.out.println(thread.getName()+"读操作完毕");
    } finally {
      rwl.readLock().unlock();
    }
  }
}

此时打印的结果为:

Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0正在进行读操作
Thread-1正在进行读操作
Thread-0读操作完毕
Thread-1读操作完毕

说明thread1和thread2在同时进行读操作。

这样就大大提升了读操作的效率。

不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

关于ReentrantReadWriteLock类中的其他方法感兴趣的朋友可以自行查阅API文档。

5.Lock和synchronized的选择

总结来说,Lock和synchronized有以下几点不同:

  1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;
2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;
3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;
4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。
5)Lock可以提高多个线程进行读操作的效率。

在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

三.锁的相关概念介绍

在前面介绍了Lock的基本使用,这一节来介绍一下与锁相关的几个概念。

1.可重入锁

如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

看下面这段代码就明白了:

class MyClass {
  public synchronized void method1() {
    method2();
  }
  public synchronized void method2() {
  }
}

上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。

而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

2.可中断锁

可中断锁:顾名思义,就是可以相应中断的锁。

在Java中,synchronized就不是可中断锁,而Lock是可中断锁。

如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。

在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

3.公平锁

公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

看一下这2个类的源代码就清楚了:

/**
   * Sync object for non-fair locks
   */
  static final class NonfairSync extends Sync {
    private static final long serialVersionUID = 7316153563782823691L;
    /**
     * Performs lock. Try immediate barge, backing up to normal
     * acquire on failure.
     */
    final void lock() {
      if (compareAndSetState(0, 1))
        setExclusiveOwnerThread(Thread.currentThread());
      else
        acquire(1);
    }
    protected final boolean tryAcquire(int acquires) {
      return nonfairTryAcquire(acquires);
    }
  }
  /**
   * Sync object for fair locks
   */
  static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;
    final void lock() {
      acquire(1);
    }

在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。

我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:

ReentrantLock lock = new ReentrantLock(true);

如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。

/**
   * Creates an instance of {@code ReentrantLock}.
   * This is equivalent to using {@code ReentrantLock(false)}.
   */
  public ReentrantLock() {
    sync = new NonfairSync();
  }

  /**
   * Creates an instance of {@code ReentrantLock} with the
   * given fairness policy.
   *
   * @param fair {@code true} if this lock should use a fair ordering policy
   */
  public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
  }

另外在ReentrantLock类中定义了很多方法,比如:

  isFair()        //判断锁是否是公平锁
isLocked()    //判断锁是否被任何线程获取了
isHeldByCurrentThread()   //判断锁是否被当前线程获取了
hasQueuedThreads()   //判断是否有线程在等待该锁

在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。

4.读写锁

读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。

正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。

可以通过readLock()获取读锁,通过writeLock()获取写锁。

关于synchronized与lock在Java中有什么不同问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注创新互联行业资讯频道了解更多相关知识。


网站标题:synchronized与lock在Java中有什么不同
路径分享:http://www.cdkjz.cn/article/gjjooi.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220