从品牌网站建设到网络营销策划,从策略到执行的一站式服务
这篇文章主要为大家展示了“pytorch中batch normalize的使用示例”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“pytorch中batch normalize的使用示例”这篇文章吧。
创新互联建站欢迎来电:13518219792,为您提供成都网站建设网页设计及定制高端网站建设服务,创新互联建站网页制作领域十年,包括成都宣传片制作等多个行业拥有多年建站经验,选择创新互联建站,为网站锦上添花!torch.nn.BatchNorm1d()
1、BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True)
对于2d或3d输入进行BN。在训练时,该层计算每次输入的均值和方差,并进行平行移动。移动平均默认的动量为0.1。在验证时,训练求得的均值/方差将用于标准化验证数据。
num_features:表示输入的特征数。该期望输入的大小为'batch_size x num_features [x width]'
Shape: - 输入:(N, C)或者(N, C, L) - 输出:(N, C)或者(N,C,L)(输入输出相同)
2、BatchNorm2d(同上)
对3d数据组成的4d输入进行BN。
num_features: 来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'
Shape: - 输入:(N, C,H, W) - 输出:(N, C, H, W)(输入输出相同)
3、BatchNorm3d(同上)
对4d数据组成的5d输入进行BN。
以上是“pytorch中batch normalize的使用示例”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联行业资讯频道!
成都网站建设公司地址:成都市青羊区太升南路288号锦天国际A座10层 建设咨询028-86922220
成都快上网科技有限公司-四川网站建设设计公司 | 蜀ICP备19037934号 Copyright 2020,ALL Rights Reserved cdkjz.cn | 成都网站建设 | © Copyright 2020版权所有.
专家团队为您提供成都网站建设,成都网站设计,成都品牌网站设计,成都营销型网站制作等服务,成都建网站就找快上网! | 成都网站建设哪家好? | 网站建设地图