资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

df函数python,df=idl×b

python基础中,df后面是什么

python基础中,df后面是传函数参数。是要在小括号里面传函数参数,后面的[]是因为函数返回一个数组,列表所以用[0]取得索引为0处的值。

成都创新互联公司主营枣阳网站建设的网络公司,主营网站建设方案,重庆APP软件开发,枣阳h5重庆小程序开发搭建,枣阳网站营销推广欢迎枣阳等地区企业咨询

python基础内容简介

本书是大气海洋学科方向学者的python入门书。全书侧重于介绍大气海洋学科领域python编程常用的基础知识,包括即也阻的获取、安装、环境编辑器等内容,示例介绍了python语言基础,流程控制,列表、元组、字典与集合,函数,类和对象,模块,存储户等基础知识。

结合python基础知识,介绍了异常处理、计算生态、正则表达式、python脚本、日志等内容。文后结合习题帮助读者解决常见编程问题和困惑,从而帮助读者实现时也on知识的灵活使用和综舍编程,将python用于大气海洋工程当中。

本书第1~8章为Python语言基础,主要介绍Python的基本用法;第9章为一个实战,帮助读者理解前8章的知识,第10~17章为Python的进阶使用,包含面向对象编程、函数式编程入门、文件读写、异常处理、模块和包几个部分。

第18章为第2个实战,帮助读者融会贯通前17章的知识,同时抛砖引玉,引起读者探索的兴趣。

def dayUP(df)在Python开头是什么意思?df是daydfactor 的简写吗?

def dayUP(df):

#your code goes here

def 在python中是一个函数定义的关键字。

dayUP是函数名。

后面的括号里的df代表是什么意思,如果作者没有对df进行注释的话,也只有他自己知道。我们只需要知道这是一个参数就可以了,管他是什么的简写。

Python中def dayUP(df)中的df是什么意思?

你这是定义了一个函数,df是该函数的变量,是你自己设置的变量名,所以df的意思只有你自己知道啊。

Python pandas用法

在Python中,pandas是基于NumPy数组构建的,使数据预处理、清洗、分析工作变得更快更简单。pandas是专门为处理表格和混杂数据设计的,而NumPy更适合处理统一的数值数组数据。

使用下面格式约定,引入pandas包:

pandas有两个主要数据结构:Series和DataFrame。

Series是一种类似于一维数组的对象,它由 一组数据 (各种NumPy数据类型)以及一组与之相关的 数据标签(即索引) 组成,即index和values两部分,可以通过索引的方式选取Series中的单个或一组值。

pd.Series(list,index=[ ]) ,第二个参数是Series中数据的索引,可以省略。

Series类型索引、切片、运算的操作类似于ndarray,同样的类似Python字典类型的操作,包括保留字in操作、使用.get()方法。

Series和ndarray之间的主要区别在于Series之间的操作会根据索引自动对齐数据。

DataFrame是一个表格型的数据类型,每列值类型可以不同,是最常用的pandas对象。DataFrame既有行索引也有列索引,它可以被看做由Series组成的字典(共用同一个索引)。DataFrame中的数据是以一个或多个二维块存放的(而不是列表、字典或别的一维数据结构)。

pd.DataFrame(data,columns = [ ],index = [ ]) :columns和index为指定的列、行索引,并按照顺序排列。

如果创建时指定了columns和index索引,则按照索引顺序排列,并且如果传入的列在数据中找不到,就会在结果中产生缺失值:

数据索引 :Series和DataFrame的索引是Index类型,Index对象是不可修改,可通过索引值或索引标签获取目标数据,也可通过索引使序列或数据框的计算、操作实现自动化对齐。索引类型index的常用方法:

重新索引 :能够改变、重排Series和DataFrame索引,会创建一个新对象,如果某个索引值当前不存在,就引入缺失值。

df.reindex(index, columns ,fill_value, method, limit, copy ) :index/columns为新的行列自定义索引;fill_value为用于填充缺失位置的值;method为填充方法,ffill当前值向前填充,bfill向后填充;limit为最大填充量;copy 默认True,生成新的对象,False时,新旧相等不复制。

删除指定索引 :默认返回的是一个新对象。

.drop() :能够删除Series和DataFrame指定行或列索引。

删除一行或者一列时,用单引号指定索引,删除多行时用列表指定索引。

如果删除的是列索引,需要增加axis=1或axis='columns'作为参数。

增加inplace=True作为参数,可以就地修改对象,不会返回新的对象。

在pandas中,有多个方法可以选取和重新组合数据。对于DataFrame,表5-4进行了总结

适用于Series和DataFrame的基本统计分析函数 :传入axis='columns'或axis=1将会按行进行运算。

.describe() :针对各列的多个统计汇总,用统计学指标快速描述数据的概要。

.sum() :计算各列数据的和

.count() :非NaN值的数量

.mean( )/.median() :计算数据的算术平均值、算术中位数

.var()/.std() :计算数据的方差、标准差

.corr()/.cov() :计算相关系数矩阵、协方差矩阵,是通过参数对计算出来的。Series的corr方法用于计算两个Series中重叠的、非NA的、按索引对齐的值的相关系数。DataFrame的corr和cov方法将以DataFrame的形式分别返回完整的相关系数或协方差矩阵。

.corrwith() :利用DataFrame的corrwith方法,可以计算其列或行跟另一个Series或DataFrame之间的相关系数。传入一个Series将会返回一个相关系数值Series(针对各列进行计算),传入一个DataFrame则会计算按列名配对的相关系数。

.min()/.max() :计算数据的最小值、最大值

.diff() :计算一阶差分,对时间序列很有效

.mode() :计算众数,返回频数最高的那(几)个

.mean() :计算均值

.quantile() :计算分位数(0到1)

.isin() :用于判断矢量化集合的成员资格,可用于过滤Series中或DataFrame列中数据的子集

适用于Series的基本统计分析函数,DataFrame[列名]返回的是一个Series类型。

.unique() :返回一个Series中的唯一值组成的数组。

.value_counts() :计算一个Series中各值出现的频率。

.argmin()/.argmax() :计算数据最大值、最小值所在位置的索引位置(自动索引)

.idxmin()/.idxmax() :计算数据最大值、最小值所在位置的索引(自定义索引)

pandas提供了一些用于将表格型数据读取为DataFrame对象的函数。下表对它们进行了总结,其中read_csv()、read_table()、to_csv()是用得最多的。

在数据分析和建模的过程中,相当多的时间要用在数据准备上:加载、清理、转换以及重塑。

在许多数据分析工作中,缺失数据是经常发生的。对于数值数据,pandas使用浮点值NaN(np.nan)表示缺失数据,也可将缺失值表示为NA(Python内置的None值)。

替换值

.replace(old, new) :用新的数据替换老的数据,如果希望一次性替换多个值,old和new可以是列表。默认会返回一个新的对象,传入inplace=True可以对现有对象进行就地修改。

删除重复数据

利用函数或字典进行数据转换

df.head():查询数据的前五行

df.tail():查询数据的末尾5行

pandas.cut()

pandas.qcut() 基于分位数的离散化函数。基于秩或基于样本分位数将变量离散化为等大小桶。

pandas.date_range() 返回一个时间索引

df.apply() 沿相应轴应用函数

Series.value_counts() 返回不同数据的计数值

df.aggregate()

df.reset_index() 重新设置index,参数drop = True时会丢弃原来的索引,设置新的从0开始的索引。常与groupby()一起用

numpy.zeros()

Python中print(df.head()) 是什么意思

df是DataFrame的缩写,这里表示读取进来的数据,比如,最简单的一个实例:

import pandas as pd

df = pd.read_excel(r'C:\Users\Shan\Desktop\x.xlsx')

print(df.head())

df.head()会将excel表格中的第一行看作列名,并默认输出之后的五行,在head后面的括号里面直接写你想要输出的行数也行,比如2,10,100之类的。

excel表:

输出结果:


网站名称:df函数python,df=idl×b
转载注明:http://www.cdkjz.cn/article/dssgojh.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220