资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

箱图在数据预处理中的应用

箱图简介

箱型图是一种用作显示一组数据分布情况的统计图,因型状如箱子而得名。
1977年由美国著名统计学家约翰·图基(John Tukey)发明。它能显示出一组数据的最大值、最小值、中位数及上下四分位数。

成都创新互联公司从2013年开始,是专业互联网技术服务公司,拥有项目网站建设、成都网站制作网站策划,项目实施与项目整合能力。我们以让每一个梦想脱颖而出为使命,1280元巫山做网站,已为上家服务,为巫山各地企业和个人服务,联系电话:028-86922220


其中,中位数(50%)上四分位数(75%)下四分位数(25%)都很好理解。
上边缘下边缘的概念是不确定的,一般有以下几种情况(不限于以下几种情况):

  1. 所有数据中的最大值和最小值
  2. 在[Q1-1.5IQR, Q3+1.5IQR]范围里的极小值和极大值 (通常被称为Tukey Boxplot)
  3. 在平均数的基础上上下浮动一个标准差
  4. 第9百分位数,第91百分位数
  5. 第2百分位数,第98百分位数
  6. 等等。。。

至于异常值,也就是比上边缘大,比下边缘小的值,如果上下边缘是左右数据中的最大值和最小值,那么就不会有异常值。

数据预处理中的箱图

箱图最大的优势是以一种简单的方式显示了数据的分布情况。
而我们在数据预处理之前,整体上了解数据各个特征的分布情况是非常有必要的,通过箱图,了解数据的质量。
比如:

  1. 偏离中间值的情况,看中位数的位置
  2. Q1和Q3之间数据的量,看箱体的长短
  3. 异常值多不多,偏离大不大,通过调整上下边缘来查看

了解数据各个特征(也就是每列)的质量和分布情况,有助于后续决策如何清洗数据,如何选择合适的算法来分析不同的特征。

示例

最后,通过一个简单的实例来演示如何通过箱图来检验数据的情况的。
数据来源:国家统计局历年粮食产量的统计数据。

数据比较多,这里为了演示,只取了3列来作图。

中稻和一季晚稻单位面积产量(公斤/公顷)
亚麻单位面积产量(公斤/公顷)
其他谷物单位面积产量(公斤/公顷)
冬小麦单位面积产量(公斤/公顷)
双季晚稻单位面积产量(公斤/公顷)
夏收粮食单位面积产量(公斤/公顷)
大豆单位面积产量(公斤/公顷)
大麦单位面积产量(公斤/公顷)
大麻单位面积产量(公斤/公顷)
小麦单位面积产量(公斤/公顷)
早稻单位面积产量(公斤/公顷)
春小麦单位面积产量(公斤/公顷)
棉花单位面积产量(公斤/公顷)
油料单位面积产量(公斤/公顷)
油菜籽单位面积产量(公斤/公顷)
烟叶单位面积产量(公斤/公顷)
烤烟单位面积产量(公斤/公顷)
玉米单位面积产量(公斤/公顷)
甘蔗单位面积产量(公斤/公顷)
甜菜单位面积产量(公斤/公顷)
秋粮单位面积产量(公斤/公顷)
稻谷单位面积产量(公斤/公顷)
粮食单位面积产量(公斤/公顷)
糖料单位面积产量(公斤/公顷)
红小豆单位面积产量(公斤/公顷)
绿豆单位面积产量(公斤/公顷)
胡麻籽单位面积产量(公斤/公顷)
芝麻单位面积产量(公斤/公顷)
花生单位面积产量(公斤/公顷)
苎麻单位面积产量(公斤/公顷)
葵花籽单位面积产量(公斤/公顷)
蔬菜单位面积产量(公斤/公顷)
薯类单位面积产量(公斤/公顷)
谷子单位面积产量(公斤/公顷)
谷物单位面积产量(公斤/公顷)
豆类单位面积产量(公斤/公顷)
马铃薯单位面积产量(公斤/公顷)
高粱单位面积产量(公斤/公顷)
麻类单位面积产量(公斤/公顷)
黄红麻单位面积产量(公斤/公顷)

前3列数据如下:

print(data)


根据3个特征箱图如下:

box1, box2, box3 = data["中稻和一季晚稻单位面积产量(公斤/公顷)"], data["亚麻单位面积产量(公斤/公顷)"], data["其他谷物单位面积产量(公斤/公顷)"]

plt.title("sample for 箱图")
labels = ["中稻和一季晚稻", "亚麻", "其他谷物"]

plt.boxplot([box1, box2, box3], labels=labels)
plt.show()

从图中可以看出,其他谷物的数据分布比较平均,而中稻和一季晚稻的数据偏重于上半部,亚麻的数据没有明显的偏重。
此外,只有一个异常值(中稻和一季晚稻的零值数据)。

箱图的默认上下边缘数据是 Q3 + whis(Q3-Q1) 和 Q1 - whis(Q3-Q1),其中 whis = 1.5
我们可以通过调整 whis 的大小来调整上下边缘的值,比如:

plt.boxplot([box1, box2, box3], labels=labels, whis=0.5)

这里 whis 设置为0.5,缩小了上下边缘的间距,异常值就增多了。

总结

通过箱图,可以直观看出整个数据中各个特征的分布情况。
在数据预处理之前,用来了解收集数据的概况大有帮助。


网站栏目:箱图在数据预处理中的应用
转载源于:http://www.cdkjz.cn/article/dsojoic.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220