资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

python函数索引,python字符串的索引和查找函数

python的index函数,获取最后一个

python的index函数可以获取列表中值的第一个索引。

创新互联主营苏家屯网站建设的网络公司,主营网站建设方案,手机APP定制开发,苏家屯h5小程序定制开发搭建,苏家屯网站营销推广欢迎苏家屯等地区企业咨询

list= [1,2,3,4,5,1,2,2]

list.index(2) 1

如果要获取相同值的最后一个索引:

len(list) - list[::-1].index(2) - 1

反向取得list后,用list的长度减去反转后出现的第一个索引再减1

Python 数据处理(二十四)—— 索引和选择

如果你想获取 'A' 列的第 0 和第 2 个元素,你可以这样做:

这也可以用 .iloc 获取,通过使用位置索引来选择内容

可以使用 .get_indexer 获取多个索引:

警告 :

对于包含一个或多个缺失标签的列表,使用 .loc 或 [] 将不再重新索引,而是使用 .reindex

在以前的版本中,只要索引列表中存在至少一个有效标签,就可以使用 .loc[list-of-labels]

但是现在,只要索引列表中存在缺失的标签将引发 KeyError 。推荐的替代方法是使用 .reindex() 。

例如

索引列表的标签都存在

先前的版本

但是,现在

索引标签列表中包含不存在的标签,使用 reindex

另外,如果你只想选择有效的键,可以使用下面的方法,同时保留了数据的 dtype

对于 .reindex() ,如果有重复的索引将会引发异常

通常,您可以将所需的标签与当前轴做交集,然后重新索引

但是,如果你的索引结果包含重复标签,还是会引发异常

使用 sample() 方法可以从 Series 或 DataFrame 中随机选择行或列。

该方法默认会对行进行采样,并接受一个特定的行数、列数,或数据子集。

默认情况下, sample 每行最多返回一次,但也可以使用 replace 参数进行替换采样

默认情况下,每一行被选中的概率相等,但是如果你想让每一行有不同的概率,你可以为 sample 函数的 weights 参数设置抽样权值

这些权重可以是一个列表、一个 NumPy 数组或一个 Series ,但它们的长度必须与你要抽样的对象相同。

缺失的值将被视为权重为零,并且不允许使用 inf 值。如果权重之和不等于 1 ,则将所有权重除以权重之和,将其重新归一化。例如

当应用于 DataFrame 时,您可以通过简单地将列名作为字符串传递给 weights 作为采样权重(前提是您要采样的是行而不是列)。

sample 还允许用户使用 axis 参数对列进行抽样。

最后,我们还可以使用 random_state 参数为 sample 的随机数生成器设置一个种子,它将接受一个整数(作为种子)或一个 NumPy RandomState 对象

当为该轴设置一个不存在的键时, .loc/[] 操作可以执行放大

在 Series 的情况下,这实际上是一个追加操作

可以通过 .loc 在任一轴上放大 DataFrame

这就像 DataFrame 的 append 操作

由于用 [] 做索引必须处理很多情况(单标签访问、分片、布尔索引等),所以需要一些开销来搞清楚你的意图

如果你只想访问一个标量值,最快的方法是使用 at 和 iat 方法,这两个方法在所有的数据结构上都实现了

与 loc 类似, at 提供了基于标签的标量查找,而 iat 提供了基于整数的查找,与 iloc 类似

同时,你也可以根据这些索引进行设置值

如果索引标签不存在,会放大数据

另一种常见的操作是使用布尔向量来过滤数据。运算符包括:

|(or) 、 (and) 、 ~ (not)

这些必须用括号来分组,因为默认情况下, Python 会将 df['A'] 2 df['B'] 3 这样的表达式评估为 df['A'] (2 df['B']) 3 ,而理想的执行顺序是 (df['A'] 2) (df['B'] 3)

使用一个布尔向量来索引一个 Series ,其工作原理和 NumPy ndarray 一样。

您可以使用一个与 DataFrame 的索引长度相同的布尔向量从 DataFrame 中选择行

列表推导式和 Series 的 map 函数可用于产生更复杂的标准

我们可以使用布尔向量结合其他索引表达式,在多个轴上索引

iloc 支持两种布尔索引。如果索引器是一个布尔值 Series ,就会引发异常。

例如,在下面的例子中, df.iloc[s.values, 1] 是正确的。但是 df.iloc[s,1] 会引发 ValueError 。

python常用函数

1、complex()

返回一个形如 a+bj 的复数,传入参数分为三种情况:

参数为空时,返回0j;参数为字符串时,将字符串表达式解释为复数形式并返回;参数为两个整数(a,b)时,返回 a+bj;参数只有一个整数 a 时,虚部 b 默认为0,函数返回 a+0j。

2、dir()

不提供参数时,返回当前本地范围内的名称列表;提供一个参数时,返回该对象包含的全部属性。

3、divmod(a,b)

a -- 代表被除数,整数或浮点数;b -- 代表除数,整数或浮点数;根据 除法运算 计算 a,b 之间的商和余数,函数返回一个元组(p,q) ,p 代表商 a//b ,q 代表余数 a%b。

4、enumerate(iterable,start=0)

iterable -- 一个可迭代对象,列表、元组序列等;start -- 计数索引值,默认初始为0‘该函数返回枚举对象是个迭代器,利用 next() 方法依次返回元素值,每个元素以元组形式存在,包含一个计数元素(起始为 start )和 iterable 中对应的元素值。


网站名称:python函数索引,python字符串的索引和查找函数
转载源于:http://www.cdkjz.cn/article/dsijgsg.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220