资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

折线图函数python,折线图函数名

python怎么画折线图

一、环境准备

10年积累的成都做网站、网站制作、成都外贸网站建设经验,可以快速应对客户对网站的新想法和需求。提供各种问题对应的解决方案。让选择我们的客户得到更好、更有力的网络服务。我虽然不认识你,你也不认识我。但先网站制作后付款的网站建设流程,更有彰武免费网站建设让你可以放心的选择与我们合作。

linux ubuntu 下需安装下面三个包:

Numpy, Scipy,Matplotlib

分别输入下面的代码进行安装:

[plain] view plain copy

pip install numpy

pip install scipy

sudo apt-get install python-matplotlib

测试是否安装成功

[html] view plain copy

python

import pylab

如果没有报错则安装成功

二、开始画图

1. 画最简单的直线图

代码如下:

[python] view plain copy

import numpy as np

import matplotlib.pyplot as plt

x=[0,1]

y=[0,1]

plt.figure()

plt.plot(x,y)

plt.savefig("easyplot.jpg")

结果如下:

代码解释:

[python] view plain copy

#x轴,y轴

x=[0,1]

y=[0,1]

#创建绘图对象

plt.figure()

#在当前绘图对象进行绘图(两个参数是x,y轴的数据)

plt.plot(x,y)

#保存图象

plt.savefig("easyplot.jpg")

2. 给图加上标签与标题

上面的图没有相应的X,Y轴标签说明与标题

在上述代码基础上,可以加上这些内容

代码如下:

[python] view plain copy

import numpy as np

import matplotlib.pyplot as plt

x=[0,1]

y=[0,1]

plt.figure()

plt.plot(x,y)

plt.xlabel("time(s)")

plt.ylabel("value(m)")

plt.title("A simple plot")

结果如下:

代码解释:

[python] view plain copy

plt.xlabel("time(s)") #X轴标签

plt.ylabel("value(m)") #Y轴标签

plt.title("A simple plot") #标题

3. 画sinx曲线

代码如下:

[python] view plain copy

# -*- coding: utf-8 -*-

import numpy as np

import matplotlib.pyplot as plt

#设置x,y轴的数值(y=sinx)

x = np.linspace(0, 10, 1000)

y = np.sin(x)

#创建绘图对象,figsize参数可以指定绘图对象的宽度和高度,单位为英寸,一英寸=80px

plt.figure(figsize=(8,4))

#在当前绘图对象中画图(x轴,y轴,给所绘制的曲线的名字,画线颜色,画线宽度)

plt.plot(x,y,label="$sin(x)$",color="red",linewidth=2)

#X轴的文字

plt.xlabel("Time(s)")

#Y轴的文字

plt.ylabel("Volt")

#图表的标题

plt.title("PyPlot First Example")

#Y轴的范围

plt.ylim(-1.2,1.2)

#显示图示

plt.legend()

#显示图

plt.show()

#保存图

plt.savefig("sinx.jpg")

结果如下:

4. 画折线图

代码如下:

[python] view plain copy

# -*- coding: utf-8 -*-

import numpy as np

import matplotlib.pyplot as plt

#X轴,Y轴数据

x = [0,1,2,3,4,5,6]

y = [0.3,0.4,2,5,3,4.5,4]

plt.figure(figsize=(8,4)) #创建绘图对象

plt.plot(x,y,"b--",linewidth=1)   #在当前绘图对象绘图(X轴,Y轴,蓝色虚线,线宽度)

plt.xlabel("Time(s)") #X轴标签

plt.ylabel("Volt")  #Y轴标签

plt.title("Line plot") #图标题

plt.show()  #显示图

plt.savefig("line.jpg") #保存图

结果如下:

python画折线图,麻烦帮忙看看

提示是说2017-01-01不能转化为float数据,因为没有你的数据,提供一个简单的例子(两条折线)

import matplotlib.pyplot as plt

x = [1,2,3]

y = [5,7,4]

x2 = [1,2,3]

y2 = [10,14,12]

plt.plot(x, y, label='First Line')

plt.plot(x2, y2, label='Second Line')

plt.xlabel('Plot Number')

plt.ylabel('Important var')

plt.title('Interesting Graph\nCheck it out')

plt.legend()

plt.savefig("test.png")

用Python设置matplotlib.plot的坐标轴刻度间隔以及刻度范围

转自 跳转链接

 一、用默认设置绘制折线图

import matplotlib.pyplot as plt

x_values=list(range(11))

#x轴的数字是0到10这11个整数

y_values=[x**2 for x in x_values]

#y轴的数字是x轴数字的平方

plt.plot(x_values,y_values,c='green')

#用plot函数绘制折线图,线条颜色设置为绿色

plt.title('Squares',fontsize=24)

#设置图表标题和标题字号

plt.tick_params(axis='both',which='major',labelsize=14)

#设置刻度的字号

plt.xlabel('Numbers',fontsize=14)

#设置x轴标签及其字号

plt.ylabel('Squares',fontsize=14)

#设置y轴标签及其字号

plt.show()

#显示图表

制作出图表

我们希望x轴的刻度是0,1,2,3,4……,y轴的刻度是0,10,20,30……,并且希望两个坐标轴的范围都能再大一点,所以我们需要手动设置。

二、手动设置坐标轴刻度间隔以及刻度范围

import matplotlib.pyplot as plt

from matplotlib.pyplot import MultipleLocator

#从pyplot导入MultipleLocator类,这个类用于设置刻度间隔

x_values=list(range(11))

y_values=[x**2 for x in x_values]

plt.plot(x_values,y_values,c='green')

plt.title('Squares',fontsize=24)

plt.tick_params(axis='both',which='major',labelsize=14)

plt.xlabel('Numbers',fontsize=14)

plt.ylabel('Squares',fontsize=14)

x_major_locator=MultipleLocator(1)

#把x轴的刻度间隔设置为1,并存在变量里

y_major_locator=MultipleLocator(10)

#把y轴的刻度间隔设置为10,并存在变量里

ax=plt.gca()

#ax为两条坐标轴的实例

ax.xaxis.set_major_locator(x_major_locator)

#把x轴的主刻度设置为1的倍数

ax.yaxis.set_major_locator(y_major_locator)

#把y轴的主刻度设置为10的倍数

plt.xlim(-0.5,11)

#把x轴的刻度范围设置为-0.5到11,因为0.5不满一个刻度间隔,所以数字不会显示出来,但是能看到一点空白

plt.ylim(-5,110)

#把y轴的刻度范围设置为-5到110,同理,-5不会标出来,但是能看到一点空白

plt.show()

绘制结果

python 画折线图加一个legend

import matplotlib.pyplot as plt

plt.plot([1,2,4,1], label='line1')

plt.plot([3,1,2,3], label='line2')

plt.legend()

可以通过plot函数的label参数来设置,

然后需要调用一下legend()函数。

如何使用Python的Pandas库绘制折线图

我们经常会使用Python的Pandas绘制各种数据图形,那么如何使用它绘制折线图呢?下面我给大家分享一下。

工具/材料

Pycharm

01

首先我们需要打开Excel软件准备需要的数据,这里多准备几列数据,一列就是一条折线,如下图所示

02

然后我们打开Pycharm软件,新建Python文件,导入Pandas库,接着将Excel中的数据读取进数据集缓存,如下图所示

03

接下来我们利用plot方法绘制折线图,如下图所示,这里只添加了一列标题

04

运行文件以后我们就可以看到折线图显示出来了,但是比较的简单,下面我们逐渐的丰富它

05

然后在plot方法中将excel里面的多列标题都添加进来,如下图所示

06

这次在运行文件的时候我们就可以看到折线图上有多条线了,如下图所示

07

接下来我们在为折线图设置标题,X,Y坐标轴的内容,如下图所示

08

然后通过plot方法下面的area方法对折线图的空白区域进行叠加填充,如下图所示

09

最后我们运行完善好后的文件,就可以看到如下图所示的折线图了,到此我们的折线图绘制也就完成了

用python的matplotlib绘图,如何使用fill_between函数,使折线图在直线40以上的填充为绿色?

你这个dimensions的错误。是因为x,y的类型。

你仔细看一下numpy,先初始化好。就没有这个问题了。

x,y的数组长度不一致。


本文名称:折线图函数python,折线图函数名
分享路径:http://www.cdkjz.cn/article/dscepds.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220