资讯

精准传达 • 有效沟通

从品牌网站建设到网络营销策划,从策略到执行的一站式服务

并查集的应用-创新互联

  • 定义

    专注于为中小企业提供成都网站建设、做网站服务,电脑端+手机端+微信端的三站合一,更高效的管理,为中小企业衡阳免费做网站提供优质的服务。我们立足成都,凝聚了一批互联网行业人才,有力地推动了成百上千家企业的稳健成长,帮助中小企业通过网站建设实现规模扩充和转变。

 并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。

  • 应用

 若某个朋友圈过于庞大,要判断两个人是否是在一个朋友圈,确实还很不容易,给出某个朋友关系图,求任意给出的两个人是否在一个朋友圈。 规定:x和y是朋友,y和z是朋友,那么x和z在一个朋友圈。如果x,y是朋友,那么x的朋友都与y的在一个朋友圈,y的朋友也都与x在一个朋友圈。

如下图:

  并查集的应用

代码:

//找朋友圈个数
//找父亲节点
int FindRoot(int child1, int *_set)
{
	int root = child1;
	while (_set[root] >= 0)
	{
		root = _set[root];
	}
	return root;
}
//合并
void Union(int root1, int root2, int *&_set)
{
	_set[root1] += _set[root2];
	_set[root2] = root1;
}
int Friend(int n, int m, int r[][2])//n为人数,m为组数,r为关系
{
	assert(n > 0);
	assert(m > 0);
	assert(r);
	int *_set = new int[n];
	for (int i = 0; i < n+1; i++)
	{
		_set[i] = -1;
	}
	for (int i = 0; i < m; i++)
	{
		int root1 = FindRoot(r[i][0],_set);
		int root2 = FindRoot(r[i][1],_set);
		if ((_set[root1] == -1 && _set[root2] == -1) || root1 != root2)
		{
			Union(root1, root2, _set);
		}
	}
	int count = 0;
	for (int i = 1; i <= n; i++)
	{
		if (_set[i] < 0)
		{
			count++;
		}
	}
	return count;

}
//主函数
#define _CRT_SECURE_NO_WARNINGS 1
#include
using namespace std;
#include
#include"UnionFindSet.h"
int main()
{
	int r[][2] = { { 1, 2 }, { 2, 3 }, { 3, 4 }, { 5, 6 } };
	cout << Friend(6, 4, r) << endl;
	system("pause");
	return 0;
}

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


文章题目:并查集的应用-创新互联
当前地址:http://www.cdkjz.cn/article/dgoeoo.html
多年建站经验

多一份参考,总有益处

联系快上网,免费获得专属《策划方案》及报价

咨询相关问题或预约面谈,可以通过以下方式与我们联系

大客户专线   成都:13518219792   座机:028-86922220